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LOADS AND DEFORMATIONS OF BUCKLED RECTANGULAR PLATES!

By MANUEL STEIN

SUMMARY

The  wonlivear large-deflection  equations  of
von Kdrmdn for plates are converted into a et of
linear equations by exrpanding the displacements into
a power series in terms of an arbitrary parameter.
The  postbuckling beharior of simply  supported
rectangular plates subjected to longitudinal com-
pression and subject to a wniform temperature rise
is Anvestigated in detail by solring the first fewr of
the equations.

Frperimental data are presented  for the com-
pression problem.  Comparisons are made for total
shortening and for loeal strains and deflections which
indicate good agreement between experimental results
anidd theoretical results.

INTRODUCTION

Unlike simple columns, rectangular plates which
are supported on all edges may carry considerable
load bevond their buekling load. The postbuckling
behavior of such plates in the elastic range of the
plite material is studied in this investigation.
Some solutions for plites with simply supported
edges are presented, and these solutions should
provide a conservative estimate of the postbuck-
ling behavior of a rectangular plate of thin-wall
construction supported by relatively stiff support-
g elements (stringers, ribs).

Numerous studies have been made ol the post-
buckling behavior of flat rectangular plates; some
of the most important of these investigations are
deseribed in references 1 to 13, The basie differ-
ential equations for a plate element undergoing
large defleetions were presented by von Karmdn
m reference 1; von Kéarmdn, Sechler, and Donnell

in reference 2 introduced the coneept of effeetive
width.  Various approximate solutions for post-
buckling hehavior were presented by Cox (ref. 3),
Tunoshenko (ref. 4), Marguerre and Trefftz (ref.
5), and Marguerre (ref. 6), where analvses were
carried out by energy methods.  In reference 7,
Kromm and Marguerre extended the results of
references 5 and 6 for simply supported infinitely
long plites in compression. Koiter in reference 8
further extended this work to make it applicable
far heyond buckling. By means of Fourier series,
Levy in reference 9 obtained an “exact” solution
to the large-defleetion equations of von Kiirmin
for square plates. The effects of initial deviation
from flatness for square plates were investigated
by Hu, Lundquist, and Batdorl in referenee 10
ad by Coan in reference 11 by means of the
Fourier series method ol solution advanced in
reference 9. In reference 10, the unloaded edges
of the plate were constrained to remain straight
whereas in reference 11, the side edges were free
to distort in the plane of the plate. In reference 12
Mayers and Budiansky anulyzed the hehavior of
a square plate compressed beyond the elastie
buckling load into the range where plastie vielding
takes place.  Alexeev in reference 13 obtained an
exact solution for the square plate buekling into
one buckle (as did Levy in ref. 99 but ineluded in
addition an exact solntion for the square plate
buckling into two buckles (in the direction of
loading).

With the exeeption of the analvsis of Alexeev
(rel. 13), all previous studies of the postbuckling
behavior of rectangular plates used either energy
methods or FFourier-series expansions of the basic

Ulhe information presented herein was o part of o dissertation entitled “Postbuckling Behavior of Rectangular Plates™ which was offered in partial
Tulfitlnient of the requirements for the degree of Doctor of Philosophy in Applied Mechanies, Virginia Polytechnic Institute, Blacksburg, Virginia, June 1958,
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nonlinear differential equations of von Kirmin.
Alexeev used a method of suecessive approxima-
tion.  Tu the present paper the basie nonlinear
differential equations are converted into an infinite
set of lincar differential equations by expanding
the displacements into a power series in terms of
an arbitrary parameter.  The first few of the
equations of the infinite set turn out to be the
siall-deflection equations. Solution of these and
succeeding equations permits a study of the he-
havior ol the plate at buckling and beyond, up
into the large deflection range. The postbuckling
hehvior of a simply supported plate subjected to
longitudinal compression is studied in detail, and
the results are compared with other theoretical
results, A similar stwdy is presented for such a
plate subject to a uniform temperature rise.

Experimental results which have not been pub-
lished previously are included in the appendix and
results from these and other experiments are com-
pared with the present theory.

SYMBOLS
a plite length
b plite width
I plate thickness

, ntegers

", r displacement of point on middle

plate in »- and
y-directions, respeetively

w deflection of point on middle sur-

surface  of

fuce of plate in direetion normal
to undeformed plate

xi plate coordinates
- Ik
D plate tlexural stiffness, £-=
1201 —p”)
z' Young's modulus for material
r total compressive load
T temperature rise
NN, resultant normal forees in r- and
y-directions, respectively
N, resultant shearing foree in ay-planc
v Ll .
P, buckling load
1. temperature rise for buekling
U recoverable strain energy; that is,

energy released when edge re-
straints are removed
coeflicient of thermal expansion
buckle width-length ratio, mbja
arbitrary parameter

T N R

Poisson's ratio for material
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A total shortening (see c¢q. (27))

Yeu middle-surface shearing strain

€€, middle-surface strains in »- and
y-direetions, respectively

€ bending strain at erest of buckle

€ extreme fiber strain at crest of
buckle

G0, oo

o4 T artoyt T oyt

When subscripts 7 and y follow a comma, they
indicate partial differentintion of the principal
syvmbel with respeet to o and .

THEORY

In this section the von Kdrmédn large-deflection
cquations for plates are converted from a set of
three nonlinear partial differential equations into
an infinite set of linear partial differential equa-
tions by expanding the displacements into a power
sceries in terms of an arbitrary parameter.

The method of solution presented is similar to
a per-urbation method: however, in a perturba-
tion niethod consideration is restricted to solutions
whicl involve only small values of the arbitrary
parameter. 1t is not neecessary to restriet the
arbitrary parameter to small values in the present
analyvsis, beeause the coeflicients of the higher
powe s are small. The motivation for the applica-
tion of this method was the observation that
availuble solutions of the postbuckling behavior
of rectangular plates subjeet to longitadinal com-
pression indicated that both the shortening and
the square of the center deflection were nearly
lincar functions of the applied load o the first
part of the posthuckling range. For the compres-
sion roblem it was thus expected that the first
fow terms of a series of powers of (P—P) /P,
would be adequate to represent the displacement.
(P is the total applied load and £, is the eritieal
load. Thix expectation has been borne out.

FFo - a plate with no lateral load the von Kirmin
large deflection equations can be written in the
form

Nt ““\YII/vI/ =0 (1)
N, Npy=0 (1b)
Dviw— (A“Vr“’mr + i‘\ru W,y 23\':;/ 10, py) =0 (1 e)

where subscripts » and y which appear after a
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comma indicate partial differentiation with re-
speet to r and y, respectively.  The strain-foree
relations including the effects of change in tem-
perature T are

1 T ry
= gy (NemuNi) ol (2a)
= g (Ne—wNo) +al (2h)
214w .
Yey™ (7/;;#0 A‘\“I” (2(,)

The forees appearing in equations (2) may be
solved for and thus expressed in terms of the
straing, as follows:

. h ‘ - .
‘\’:Tl,ﬁé lex+ue,— (1+p)aT] (3a)
. h o o
-\1/:1;#:_5 [G_,,-F#EI*(]-F}L)QI] ('gb)
. Fh .
‘\I”:2(1+}1) Yru (;C)
The strain-displacement relations are
1 »
€= u,,—f—;) w,,” (4n)
] »
€= ]‘yl/—*_;i u"v{/- (4}))
Yoo= Uy e W W, (4c)

Equations (1), (3), and 4), together with a
complete set of boundary conditions, determine
the problem.  These equations are subject to
the usual out-of-plane boundary conditions re-
quired in buckling studies (zero normal deflection
and zero moment for simply supported plates).
[n addition, however, for postbuckling studies
It 18 necessary to specify in-plane  conditions.
Only plates without initial eccentricities subject
to in-plane loading are considered.

It is assumed that u, o, and w may be expanded
in a power series in terms of an arbitrary param-
cter e For the present purposes w, r, and w
are to be expanded about the point of bhuckling
(at buckling e—0):

W== ' e (5n)
=02

r= Z“) 17(")6" (5]))
n=th2
«
w25 w e (5¢)
=1y

The w0+ and w™ are functions only of »
and ».  For plates without initial eceentricities
subject  to in-plane loading the delleetion
ts zero in the loading range prior to buckling
but » and » have values other than zero.  Thus,
for small values of e, v and » would have values
close to their values just prior to buckling while
w may be proportional to e or some power of e
The series for # and ¢ is therefore expected to
start with the zero power of e while the series
for w is expected to start with a nonzero power.
As discussed in the first part of this section,
available solutions of the postbuckling behavior
of rectangular plates subjecet  to  longitudinal
compression  indicated that the square of the
center deflection was nearly a linear function
of the applied load in the first part of the post-
buckling range.  For the compression problem
it is convenient to relate e to the load P so that
E=(P—P.)/ ., Thus, the scries for w will
start with the first power,

The series for w and » as written in equations
(hn) and (5b) start with a zero power and include
only even powers and the series for w {(eq. (5¢))
starts with the first power and necludes only odd
powers.  The odd powers in the series for v and »
und the even powers in the series for w vanish for
problems of the type considered and, for simplic-
ity, they have been omitted from the start.  Inci-
dentally, the odd powers in the series for w and
¢ and the even powers in the series for w may be
deduced to vanish, onee it is recognized that, for
a given load, the parameter e may bhe either plus
or minus. For the type of problem considered,
the plate ean buckle in either direction but the
deflection shape w(r,y) is independent of the direc-
tion of buckling (except for a sign) anywhere in
the postbuekling range.  Henee, in order to pro-
vide that the shape can change only in sign, the
series for w can contain only odd powersof e The
in-plane displacements # and » on the other hand
are unchanged by the direction of buckling and,
therefore, should inelude only even powers of e

In this method it is also necessary 1o expand
the externally apphied loads and temperature dis-
tributions in terms of the arbitrary parameter.
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Tor example, the change in temperature 7', which
is independent of the direetion of buckling, should
include only even powers of e:

o

(D>

n=u, 2

’I'vmen (“)

where 7@ may be a function of z and y.

Upon substitution of equations (5) and (6) into
equations (3) and (4), the following relations are
obtained:

L '\ (n) n+ Z Z \T(mn) m+n (711‘)

n—=u,2 m=1,3n=1

@

4‘\71/:1 & 4\71; n)e n “‘\Y;m "t 6m i n (71))
4 b

n=iy 2 m=1,3 n=1,3
w0 o ®
N S Nges 33 Ngrett (70
n=, 2 m=1,3n0n=13
where
. h \ -
Ny T T ey = (e T
. Eh
A\‘ I(J"J""l I" tn) _:r#u"((mA (1 V'?,/J)ay'\n)J
—p
. IKh ‘
\ ("), N l Y ("”(/m+’.‘yn)
2(1-+-p)
A\';"IHJ ,,,‘)(114 /' (ll‘,}””ll',;"’» ‘U,Tl’ im/u, (n)) . Q\‘YY“”}
A\';{mnb ;:.) l["l' 2) (ll‘,;/m\l/' (ny T‘ #"‘yi’,mlpvfr"\) “\'Lnrm
20 -p
I’;/l ny

TNy B TIRLOETY
N = "

2040

Since e was taken to be an arbitrary paramelter,
the stipulation that a power series in e vanish re-
quires that each cocefficient of the power
If the expressions (5¢) and (7)) are sub-
the requirement that

SOTIeS
vanish.
stituted in equations (1)
cach cocfficient in the power
to the following linear equations, which are the
first few of an infinite set:

series vanish leads

N NG, =0
\'m. \Hm —0 (b“)
SVYuow f “vYry,r ’(
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DYV — (N Ow, 8 4+ N Oy 2N S, 1)) =0
(8b)
T 2 _ ATl T
NO A NE o (NIU LN ,y,,,)} (8¢)
\ 1(/‘“”4}’* Lz./» I—‘"—*(;\ 1llJ “\v(!lu]]r

Dviw® — (N Ww, &+ N w5428 wy)
f(i\rf,\%'z\r;m)u,';l;%, (:\ ;/2» | \'nl )l‘ m
NGNSy (8d)

*(h + ‘\TH) =

T4 T
AN v, :AT-\ ry.r—

(2] nm_f]\v H)u"{“‘?\w{z}.'ﬂ

AR T 18 A7 3h
”(-)‘\ vy ‘\ Iy, r A Ty, T

(8¢)

I)V‘IL(:J)_(A\';”u7s_(Iﬁ£ +J\v M)’UJ,('” \‘ 2L Y(l)!u.';.;/l)
= (NP LN Mw, 8 4 (N PN w )
FRN AN B0, + (V2N Y
NP AN, 2N Y
N NS (8D

in the sertes for « and » and
had been

If he odd powers
the «ven powers in the series for w
included, they would have formed a set of homo-
genecus differential equations with homogencous

boun-lary conditions (which would not have
coupled with the terms originally included) and

therefore  would have  vanished as  previously
indicated.

Bquations (8a) and (8h)
the vsual (inear) small-deflection equations.  In
these equations the loading terms  (the N
forces) are independent of the deflection e
Solution first of these equations and then of
some of the succeeding equations permits a study
of th behavior of the plate at buckling and then
bevod into the large-deflection range (provided
the series behaves properly). At present the only
wayvs available for determining convergence are
by a comparison of the results obtained from
the various approximations and by comparisons
of th highest approximation obtained with other

methods and with experiment.

can be tdentified as

COMPRESSION PROBLEM

So ution of equations (8) for a postbuckling
prob.em of rectangular simply supported plates
M eompression is Now The plate
has « length a, width b, and thickness &, The
otizin of coordinates is taken at one corner, as

considered.
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indicated in the following sketch:

¥

SOLUTION

The problem to be solved is the postbuckling
behavior of a rectangular, simply supported plate
in longitudinal compression with edges constrained
s0 that the displacement of each edge in the plane
of the plate is uniform. The simply supported
edge condition is selected as a practical example;
with the in-plane conditions chosen for the present
analysis, it also leads to much simpler results
than other types of edge support. For other
types of edge support there is no coneeptual
difference in the method of solution,

The boundary conditions considered can be
written:

Zero defleetion

w(0y) =-wla,y) =w(r,0)=—w(rb)y=0
Zoero moment
1 (097) == (@) =, (r ) =0, (0, 0) =0
Constant displacement
1, (0 =u,lay)=r (rN=r(rb)=0
Ziero shear stress
2,200, = 0, (e ) ==t (0 ) =, (0 D) =0

Loaded edges

0

0
J (J\fz)z:n. u{/!/ =0
Unloaded edges

J (N, =0

The given total applied load 17 is equal to or
greater than the buckling load. If for u, », and
w, the expressions in equations (5) are inserted
in the first four boundary conditions, it 1s secen
that cach of the values of 4™, +™ and w™ must
dividually satisfv these boundary conditions,
Substituting from equation (7a) into the condition
on the loaded edges gives

I) s 2 1)“”)6” ((l))
n=02
where
h A
[)wni_J (N0 adly
1}

"
= '_‘J” (NP4 NI, o ady } (10)

o
P ___J (NDL2NY, o dy
0

. .« o

Similarly, if equation (7h) is used, the condition
on the unloaded edges becomes

n 3
J (;‘\“y;m)y:(l, h(/'r::”
0
J(, (NN mppdr=0 . an
J (;\"},”+f_);‘,\Y,‘,l:;‘)!/:u,h‘[-":()
8]
. J

For this case there is no temperature vise, and all
the 7™ values are set equal to zero.

Equations (8a) can be written in terms of the
displacenmients «@ and ™. With T set equal
to zero, equations {8a) hecome

”,v;"; ]:.U ”wr/‘;/‘_'—l't'u’ ].'ffl;/),,“

1_’ I'L " l ”
n v (0 PO D
o ",v.(r!/)—*_z *Uy‘_}__.) fypr = 0

Solutions of the above equations for ™ and o'

that satisfy the boundary conditions are
2 .
, ~ a
ut e (.r—‘-)
RO\ 2

ot

(12)



6

TECH
1t therefore follows that

NP =NE

—0

Now wD ¢an be determined from equation (8b),which has the solution

mm.r

o nry
w=w, sin - y 1Y

g

This solution requires that

(") +( f."r)]
()

that satisties the houndary conditions.

1)10)

Thus far,
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the solutions obtained are identical with the small-deflection solution,
various values of 2 (for cach »i,n combination) can be identified as the set of buckling loads.

ADMINISTRATION

(13)

(14)

5)

where the set of the

The

lowest buckling load is determined by the choice of m and » for a particular length-width ratio a/b.
Note that, as is the case in small-deflection theory, the amiplitude wy cannot as yet be determined.

The values of the N may now be found (in terms of ),
Solutions that satisfy the boundary conditions are:

o ()

mr

ez /‘ ( 1117r“)2 ( (11) pcl N a i 2mmr
e T B 8
I 11‘) Ca o2/ 16 mmr a
a
(nvr")2 ( m w')z
e (I/‘lr) (1 b") wiEl\ b M\ a ‘i 2uwy  nw
R I sin ~HT Lm
[’ 8\ Y=y 16 nw b b
b
so that
Ve AT P Khey? ('mrj‘\f cos 2nmy )
e b 8 N b
. Ilae 2 um\? 21 mr
NN =T '(—f) cos
: S U !

*\r‘(r?u) =+ ‘\vl"ll/l) =0

After

Now #® must be determined from equation (8d).
(8d) becomes

and equations (8¢) may thus be solved.

<
mw . 2mwr 2nmy
S Cos - h‘
> (16)
2w 2nwy
) i b
>y
(17)

sibstitution of the A’s and «%, equation

P l"” m1r [‘ lzu“ m7r nw nrs )
et ‘”“‘*‘*" Wy ==y - +( sin - 7( sin "7
, 16 . b
I‘]hu*y( ma\! i inm/ Ehw#/na\* . 3mzr . nwy
+7 ~= ) sin-—- s ( )sm =sin 18
16 \ a ) a + 16 \ b a b (18)
.ommwr nwy . : . ,
1t should be noted that sin S S complementary solution to equation (18), and a
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term of this kind appears on the right-hand side
of this equation.  No solution to equation (18) is
possible that satisfies hboundary conditions of this
problem unless the coeflicient of this term on the
right-hand side of this equation is zero. (A more

formal discussion of the conditions for a differ-
ential equation to have a s()lutmn satisfving
boundary conditions is given in ref. 14 Thus,

Il ?
T

m 7T
7

N .

This relationship provides the means of deter-
mining the value of wy. I the trivial case w =0
is ignored, the amplitude wy is found 1o be

7

With the information that has been presented
g0 far, a first approximation to the solution of the
large-defleetion behavior of the plate may be
written if values are assigned to the perturbation

parameter e, This first approximation would
include all powers of e through the second.  The

“lues chosen for e and the rvesults in equation
form for the first approximation are indieated
subscquently.

Upon satisfaction of equation (19), equation
(18) may be solved directly for ™ to give the
following solution which satisfies the boundary
conditions:

m\ w0 =y sin T s —|—a/“" sin 27 iy Snmy
) (v——) a a b
. 161 a
L kb m na (19) mr nwy
th 7|' us o) ;,,,,lr_',‘_ L Tl'.r 5]
( " ) ( b ) 4w sin b (20)
where wy cannot be determined as vet, and
Ehwi ( m ‘)4
wd 16 Neae /
” 7‘])[ nnr +( §N7r ]*’_I’b“”(g@)z
. . L a
Fhan, 2( mr)
16 \ b
wii = 3w Fnr\? ’7777"'“7"747111 €
o[+ T ey
a b b\ a

The expression for the N9 and N9 may now be found in terms of .

Thus equations (S8¢) may be

solved.  From equations (8e) solutions that satisfy the boundary conditions are
0 A ?17111‘ m7r wya m7r o HHT Il7r 2mar
" - - - —}—ll‘m vy
Kb 4 \ , T Rmrw a
wwida Cma\? N L dmme 5 H nwN:
——— 3= ) —u( =) |sin - S ws—wR 3wy — 4 — ) (i
16mm a PA\D i 8u + b
nm\? may? nmy? mryt
. ——‘# - 7—) 5 R 4 7 ——.# -
) b L a [, 2 )/:7r1/+u' Wil m 1+(n1r)~ b a
gy ) e ~ ey NN = . —
# ( III‘IT)“_*_(HTF)‘ b Sa b (1{17{)“_*_( le1r)‘ g
. b Ca b
(mw
. 2mwr dnmy | wpwg mw mm\? b 4m 2ny )
sin =555 cos /+ ! T—{- =) - " eos 22T (21a)
i 4a « (_ 1717r Il1r b
L«
38TT72—60——2




[J.l)“\

Fhb Y

vvtﬁ?b nm\? mwN*T] . dnmy | wna . “m\? o
- 3( )—— ) SN : ; wy— gy 3wl —4 (w wiy)
160w b)) T\ b + Kb LA a ar
s <2
my° nwy\° nw . lnw 3
( )—“(‘) o 9 . i3 \ ( )+()Fu)( )
a b 2mar 2nmwy | wary'nT (nt)
(Inw)i+(nfy : b 4b b <1nw):+<2nr)*‘
_a b ; 1§ L a .
(mry (ny
2mma . 4//7”/ gy i mm\* i AN Linmr 2ny
cox =T i H1TY T L R N A Qe
Rb a . <2n1r)1+ Hw)" )
o b
so that
P e gomay? 2ny ; Anmy
T4 o\ _ 1( ) RTo— B 60 ! W s !
A\I —4\ r b 4 M 13 ) ’) + 13 ’)
[\
RN
" nw
4HPM’})PHU( ) N o 4,"( >
b 2mmr 2nwy b 2mmr dnwy
+ : g COS - — oS Treos T
(MW):+(HW)’ b (mw\:+<2nwy i )
a b a b
" (nr)‘ b
A 4 nmwa 2nwy
REEE N Il1r‘)3 ¢ a b
[( " ) +( [) i J
p
mw
v 2 . ! ang) )( 9
oA Kine, fnmy’ “ 2w mmr 2mmr
NV 2N (J' (wg—wdl) cos =" 4wy} cos- :
4 ) a 7 (MW)+<HW) a
L " b
;,v'?“(,"'"')l 4?‘_“( mvr)‘ 1
1 9 ) 31 . 9
4 mwy 4nmy o Yummr Znmy
— . 08T SR 08 g — i s COS cos T
(IHW):+(2HW)' " b (ZMw>:+(NW)‘ )
a b o ) J
e amn o nee Fhw, o mm nry? 2 (wfy gy ’mmr 2nm
N AT L TR ] !
T LA o 2 \a b [(mw) ( )] b
w”’ ";w: dnmy wyd rr‘. 2umy
mw b

[y

The differential equation (8f) for w% is now completely

TECHNICAL REPORT R-4(r

ey (}Zf)i] (

a ,

{1

nrw)
1

NATIONAL AERONAUT €8

b b 1w
.Z T Snr K

b '—_[(ﬁ)nw

+ U,H) [:

()~

I

determined exeept for .

AXND SPACE ADMINISTRATION

I/17r )Il7rl/
sin

{21h)

2nmy
A

b

(22h)

(22¢)

The condition
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that this equation has a solution for w* de-
termines the value of wy in the same way in
which the condition that equation (18) had a

solution determined the value of wy,.  Thus,

‘ma\? e\t 16027 Fina\?

Y @ ( ) LB A < )
(; a ) i VAL 3K b, \ «
e A GO (23)

(Vn(:yvvr”)’**_(:nbwr”)“_ 16,2 (’Iinr')"

3hbw 2\ @

The second approximation may now be written
if values are assigned to the perturbation param-
eter e The approximation would in-
clude all powers of € through the fourth. The
formal solution of the set of equations (87 is not
arried beyond this point for the compression
problem.

Nothing has been said so far in this section
about the values that the parameter e
except that e is arbitrary.  Since £ is the known
total applied load, the magnitude of which has
not been specified except to say that it is equal
to or greater than the buckling load, ¢ may be
related to 7 as in the following equation without

second

assumes

form for the second approximation:

loss of generality
r—r
. er 24)
€ == o~
I, (24

where P, s the buckling load which can be
identified as equal to PP for given values of
and n. With P9=P. equation (24) can be
written

P pm - ey

Equating coeflicients of equal powers of e in this
equation with that of equation (9) vields

2y I)W)

P —0for n=4

Alternatively, if € had been related instead either
to the center defleetion, to the shortening of the
loaded edges, or to some other characteristic
property of the plate loading, then that relation
would determine the 2™, In any ease, the final
results would be unchanged.

In the following relationships, rvesults for the
deformations and loads are written in equation
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+6* l:” P (h._'.)-)_{»illur [y (1 —pB) = i (37— pp?)] sin

2y 1 ., - 4"F!l
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4
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In order to obtain the first-approximation results
from the equations given for the seeond approxi-
mation (egs. (26)), simply omit the part of w that
has the coeflicient 8 and the parts of the other
results that have the coeflicient 8%

Several results of interest can now be written
down in second approximation. To obtain the
first approximation from these results, omit the
highest power of & appearing in cach v\plossl()n
The total shortening A is the sum of the inward
displacements at each end.  Sinee w is positive in
the positive z-direction,

A=u (0, —ulay) (27)
Therefore,

3(1—p) b* A 1’

™ ha 4rl)

e 28

The «xtreme-fiber bending strain at the crest of a
buckle e, is given by

J/ ( a b
€=Ml 500
= 2 ”\2n12n)

) [14-8%(
—w 9w (29)

or

(lgizb— €= 1 B8 3 17

LA &

The « xtreme-fiber compressive strain at the crest
of u Huekle e, is the sum of the middle-surface
strait and the bending strain just given.  The
midd e-surface strain may be obtained in two ways
from the results for deflections and stresses just
It may be obtained by differentiation of
the deformations (eqs. (4)) or by a caleulation in
terne of stresses (eqs. (2)). The results obtained
will e different for a given approximation de-
pend ng on which method is nsed. For example,
for the second approximation, the sixth power of
e wo d appear in the middle-surface strains if
cqua ions (4) are used, while only the fourth
powe - of e would appear if equations (2) are used.
Of ccurse, in the limit the results will agree. The
most consistent way 1o obtain a given approxima-

given,

tion vould be by equations (2), sinee powers of e
appeitr which are consistent with those appearing

elsewhere.  This method _\'ulds.

€, =— —uN (5 €
” [‘/l: ("m ‘71;) " "n 2 ]+ ”
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Therefore,

301 —g?) b2 Py e o oo
( WZ“ ) W 5,0:4‘”20_—5 (B —un?)s*+5* [Zﬁ*wlg}’

BT+ T
(B%4-n2)?
(4n'— BT (({4—4#64)517.4?’] 31— p2) b?

g . e, Hnt—
*‘2#71‘2%03(?’—([3"—;1/1?)71)34—7'—(—«»

CEETO RN

The effective width b, as defined, for example, in
reference 15, may also be of interest:

I’ «a
“‘Ejb

Substituting from equation (28) for A results in

b
b 4D ,
ISl Iﬁg‘ o (31
. 2 sam o
4 T8 5 T

RESULTS

Before the equations just derived ean be used,
the number of buckles along the length m and the
number of buckles along the width » must be
determined. At buckling the small-deflection
(Iinear) theory determines as the values of m and
n to be used the ones which vield the lowest
buckling load. Load-shortening curves are shown
for both the first and second approximation in
figcure 1 for plates of various finite length-width
ratios obtained by using the values of m (n always
equals unity for this problem) for lowest buckling
load.  In addition, load-shortening curves are
given for other values of m which interseet with
these basie curves for the range plotted.

The intersections of the load-shortening curves
indicate possible changes in buckle pattern.  For
finite plates, changes in buckle pattern are often
observed experimentally, and they have been dis-
cussed on a sound theoretical basis in reference 16.
Reference 16 presents an analysis of a simply sup-
ported three-element column connected by linear
torsional springs and supported laterally by non-
linear extensional springs. This idealized structure
duplicates many of the important properties of the
plate; for example the lond-shortening curve asso-
ciated with the symmetric buckling mode inter-
sects with that of the antisymmetric mode. The

3 Ry
2-‘,7, ,/
/ v
ra d
= 4
m- e/,
4
‘S
‘S
'
/,
/
P
2}

o | S e st approximation

472D

2nd approximation

- |t
2 a
a fo—
1 | (O)
0 2 [ 8
3(-4%) p2 A
w2 p2 O
(a) ajb=1.

Ficure  l-— Nondimensional load-shortening  curves of
rectangular simply supported plates in compression,

3 7

Pb

R st approximation
4v20

2 nd approximation

- e
2
—= [):
o] a
1 1 (b)[
0 2 a 6 8
2
30-4%) p2 A
72 p2 @

(b) a/b=1.5,

Fraure 1.—Continued.

analysis also yields a transition curve (which repre-
sents a buckling configuration which is neither
symmetric nor antisymmetric) from the symmetric
buckling configuration to the antisymmetric buck-
ling configuration. Change in buckle pattern
starts to occur at a loading corresponding to the
intersection of the load-shortening curve for the
symmetric buckle pattern and the transition eurve.
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-
.o,
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Pb R
e ma 1st approximation
4rto 2 nd approximation
- be—
b
g
()
¢ 2 = 5 8
2
S0 2 s
e ne g
(Y a/b=1.
Froree L Coutinued,

Whether this change is smooth or abrupt depends
on whether the transition curve is stable or un-
Whether the transition curve
iz stable 15 shown to depend upon the stiffness of
the nonlinear springs and upon the method of load-
ing (controlled load, controlled shortening). How-
ever, the load (and shortening) at which the buekle
pattern starts to change (secondary buckling) is
independent of the method of loading,  Secondary

stable, respeetively.

PH

P ----- 15t approximation
ar2p

s

2nd approximation

N

3{1-42) b
72 )

™
]

o

~l

() o ih—ron

Fraore 1, Coneluded.

buekiing always occurred for loads and shortenings
ereater than those given by the intersection ol the
Toud-shortening curves for the syvmmetrie and
antisvimmetrie equilibrium configurations.  In or-
der 1 determine the stability of an equilibrium
posit on for the column problem subject to a cer-
tain vpe of londing, it was necessary (o examine
the seeond variation of the total potential encrgy.
1t would be expected that sueh w procedure would
also he necessary for plate problems,

Changes in buckle pattern are not caleulated for
the plates of finite length-width ratio for the pres-
ent analvsis beeause of the extensive caleulations
requited.  However, preliminary ealeulations have
indie tted that for length-width ratios near unity
the chanee in buckle pattern would be rather
abrupt; whereas for higher length-width ratios
chanres in buekle pattern would be continuous or,
at le: st, would be less abrupt.

Fo- an infinitely long plate the number of
huckies wlong the length is infinite (e -, but
the 1atio of the number of buekles to the length
mia s finite.  The inverse of this ratio is the
buck:e length afm, which for infinite plates would
be expected 1o change continuously as the loading
progresses. (See refs. 7 and 8 The huekle length
lor a given shortening would be such that the load

mb .
- lor

is a tninimum,  Values of the ratio g

mininun foad and the corresponding values of
load and shortening are given in table . These
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TABLE 1. BUCKLE WIDTH-LENGTH RATIO 3
AND CORRESPONDING LOADS AND
SHORTENINGS FOR AN INFINITELY
LONG, SIMPLY SUPPORTED PLATE
IN LONGITUDINAL COMPRESSION

I=t approximation ! 2nd approximation
i P = R 777747771 o o
A I T L
; w? h?a m*  ha
vl | | |t 1
; 1.05 1045 1. 10 1 LO45s 1. 10
1. 33 1. 20 1.73 P20 1. 74
1. 61 1. 30 2. H i L3l 2. 16
[ PR B 1. 39 3.27 ‘ 1. 42 3. 42
225 145 105 P15l 1. 37
: 2. 68 1. 52 H. 20 } 1. 64 S, 88

values were used to plot the lond-shortening curves
for the infinite plate in figure 1(e).  Nofe that the
results giving the lowest load for a given shortening
for length-width ratios 2 and 4 (figs. 1 (¢) and (d)
do not differ mueh from the infinite-plate results.
Indeed, the infinite-plate curves form an envelope
for the finite-plate curves.

An indieation ol the convergence of the results
ol such an analvsis s the agreement between the
last approximation and the immediately previous
approxitation.
vergencee is indicated in the range plotted sinee the

From figure I, satisfactory con-

curves of the first and second approximation lie

reasonably close together.  Convergenece is better

’ ‘mbho . .
for nearly square buekles ( S ) than for higher
i
i h
values of 77
T

EXTENSIONS TO OTHER PROBLEMS

In the foregoing example problem all of the
differential equations were solved by inspection,
OfF course, for some other problems, it might be
necessary (o solve the differential equations by
other methods, The steps in the analysis of a
given problem are essentially independent of the
method ol solution of cach of the differential
equations involved,

For the example probleni the arbitrary param-
eter e was taken equal to the square root of
(=)D, This parmmeter could just as well
have heen related to the shortening or the center
deflection. For other problems it may be conven-
ient to relate the arbitrary parameter to some
other property.  For example, in a thermal buek-
ling problem (as is to be shown in a subsequent

seetion) the arbitrary parameter may be related
to the average rise in temperature beyond that
required for buckling.

In certain problems such as the postbuekling
behavior of a rectangular plate with initial eccen-
tricities or with luteral load, similar expansions in
series do not lead to linear equations.  For such
cases other methods must be used. In some prob-
lems for which similar expansions do lead to linear
equations, there may be ranges where results from
these equations do not converge rapidly, The use-
fulness of the method used or the set of linear
equations obtained in this analysis depends then
to a great extent on the tyvpe of large-deflection
problem for which a solution is desired,

COMPARISONS OF COMPRESSION THEORETICAL
RESULTS WITH OTHER RESULTS

In this section the theoretical results of the
example plate compression problem are compared
with  the best  available
results satisfving the same boundary conditions
and with experiment,

previous  theoretical

COMPARISONS WITH THEORY

For the square plate buekling into a square
huckle (m=1) both Levy (ref. 9) and Alexeey
(ref. 13) obtained exact solutions.  For a square
plate buckling into two buekles (mi=2), onlv
Alexeev obtaimed an exaet solution.  For the
range shown i figure 1, the present results
for the second approximation agree with  the
results of Levy and Alexeev. The analvtical
expressions of the present theory should bhe more
convenient to use, sinee they are given in simpler
form.

For plates of various other finite length-width
ratios, previous available for the
initial slope after buckling.  As ean be seen from
ficure 1, for some length-width
straight-line

results  are
ratios  used,
based  on
these initial slopes would  give unduly  higher

load-shortening  curves
ta

loads for given shortenings evervwhere in the

postbuckling  range  except immediately  after
buckling.

The best avalable previous results for the
mfinitely Tong plates are those of Koiter (ref. 8).
As shown in figure 2 the results of the solution
of Koiter and the solution of Marguerre (ref.-6)
follow the curve of the first approximation of the
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3 Kaoiter (ref. B)--
Marguerre {ref. 6) -
I'd
’I
/l ~
2r " Present theory
PO
an2p
[ =
----- ! st approximation
2 nd approximation
! ] 1 J
0] 2 4 [ 8
30-4%) 2 5
2 p2 a

Fravre 2. -Comparisons of theoretical nondimensional
load-shortening curves for an infinitely long simply sup-
ported plate in longitudinal compression.

present theory in the lower part of the post-
buckling range.  In the upper part of the range
Marguerre’s solution continues to follow  the
first approximation whereas Koiter's solution
deviates slightly from the first approximation
in the direetion of the second approximation as
shown by the dotted line in figure 2. The results
of the second approximation give lower more
accurate loads than previous results,

COMPARISONS WITH EXPERIMENT

To obtain simply supported loaded edges is
impractical in laboratory experiments.  The
experimental results were therefore obtaied for
panels subject to “flat end” loading which re-
sults in almost complete elamping of the loaded
However, if the panel tested is long
compared with its width (say, of length-width
ratio 4 or greater), the size and shape of the
buckles near the center are almost unaffected
by this clamping.  The experimental results
which are compared with theory are for panels
that have a length-width ratio of at least 4.
Hencee, at least certain of the experimental values
obtained should be directly comparable to the
simply supported theoretical results.  As stated
in a previous seetion, the theoretical results for
length-width ratios 2 and 4 are not very different
from the results for the infinite plate. Thus,

edges.

the experimental results may be compared to the
theoretical results for the infinite plate.  Such
comparisons are shown in figures 3 to 6, which
will now be discussed in detail.

A comparison with theory is presented in
figure 3 of the experimental load-shortening
curve for a test (deseribed in the appendix) of a
plate supported by the multiple-bay fixture.
The experimental curve shows abrupt changes
corresponding to abrupt changes in buckle pattern
from 5 1o 6 to 7 to 8 buckles while the theoretical
curve, which is based on continuous change in
buckle pattern, is smooth,

Pb
4riD
gages at the crest of a buckle indicated the plate
material had been strained into the plastic range.
The type of changes of buckle pattern obtained
with a hydraulic-type testing machine is similar
to that deseribed for a controlled-shortening
type of loading in reference 16, In consideration
of the practical difficulties of measuring total
shortening, such as how to account for the bend-
ing of the testing-machine platens, the present
agreement. between  experiment and  theory 1s
good.

Bending strains at the erest of a buckle for the
same test are plotted against load and compared
with the present theoretical results in figure 4.
Again the abrupt changes in the experimental
results do not appear in the theoretical results.
The agreement between theory and experiment
is good

Also shown is the load ( 2) when strain

L
41720

—- - — Experiment

"""" I'st approximation
. }Theory
——-— 2 nd approximation
] | ] !
o} 2 4 [ 8 1%
3(-u2) p2
72 ﬁ T

Frcvre 3.—Comparisons of nondimensional load-shorten-
ing curves as given by (elastie) theory and experiment.
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Fb
47!20

/ Expenment
_______ !'st approximation
heory

———— 2 nd gpproximation

I 1 { ]
Q 2 4 6 8

3(-4%) 52
) ﬁ xb

Fravre 4.—Comparisons of bending strain at the crest of
a buckle as given by (elastic) theory and experiment.
(w=1/3.)

In figure 5 the experimentally measured strains
at the crest of the buckle of four stiffened panels
described in the appendix are plotted against
stiffener strain and compared with the present
theory.  For this set of tests no changes were
observed in the number of buckles from the
number which appeared at initial buckling.  In
the light of previous discussions this s quite
surprising.  However, it is quite possible that
the centrally located buekles could have changed
shape as the load progressed.  Buckles at the

or
Experiment
Elostic  Plostic
’
/
Qe 41
o |
RS
~
L
Lk
' ol
—————— I st gpproximation
}Theory
——— 2 nd approximation
J
0] 2 a4 6 B
2
3(-p%) 2 .
) 3 xo

Ficuore 5.—Comparizons of extreme fiber strains at the
crest of a buckle as given by (elastie) theory and experi-
ment.  {(u=1/3.)

loaded edges could have inereased in length while
centrally located buckles decreased in length,
Also the edge restraint offered by the stiffener
probably decreased as the loading progressed and
thus allowed the buckles to become wider. Both
of these effects would contribute to smooth and
continuous change in buckle pattern similar to
that of the infinite plate. From the comparison
of the results shown, it is evident that although
the data show secatter at buckling, the theory
for simply supported plate gives strains at the
crest. of the buckle that agree with practical
experiment in the postbuckling range.

In figure 6 buckle depths measured from a series
of tests at Langley on panels with hat-section
stiffeners are plotted against stiffener strain and
are compared with theorv. There is a considerable
scatter in experimental results. However, it may
be stated that in the postbuckling range, theo-
retical results for the depth of buckle of simply
supported plates agree with experimental results
on such practical stiffened panels.

TEMPERATURE PROBLEMS

When o simply supported rectangular plate with
unrestrieted in-plane displacement of its edges is
subjected to a uniform temperature rise, the plate
simply expands and does not buckle. However,
when the in-plane displacement of the edges is
restricted, the plate may buckle. Three sets of
boundary conditions restrieting the in-plane dis-
placement are considered in this section:

o
o
[¢] ©
o
o O
81 ° ©
@
o ©
lo § o
o e P
Q< 63008
& [
Aoy
Liwa
M
Experiment
[ - -7 I'st approximation
} Theory
——— 2 nd approximation

L L 1
o] 2 3 4 5

Ji

(%

Fircure 6.—Comparisons of buckle depth as given by
theory and experiment.  (p=1/3.)
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(1) Zero displacement normal to the short edges,
uniform displacement normal to the long
edges, all edges free of shear.

(2) Zero displacement normal to all edges, all
edges free of shear.

(3) Zero displacement of all edges.

Except for the third problem the solutions are very
similar to that of the compression problem.  The
solution of the following infinite plate problem is
the limiting case for both the second and third
problems indicated above, and it is considered
separately.

(4) Infinitely long plate with zero in-plane dis-
placement of all edges.

First the various solutions are presented in
equation form; then curves similar to the load-
shortening curves of the compression problem are
presented and diseussed.  In all the problems the
material properties are assumed to be independent
of temperature.

SOLUTIONS

Problem 1: Zero in-plane displacement normal
to the short edges.—With the origin in the plate
corner, the boundary conditions for zero in-plane
displacement normal to the short edges can be
written:

Zero deflection:
w0y —wlag) we ) - we )= 0
Zero moment:
o ) -l =, 0,00 e, (b)Y 0
Zero displacement:
(0 ulay)-0
Constant displacement:
Pl )= e D) =0
Zoro shear stress:
r 00 e laan -, (e 0) =, () =0

Unloaded edges:
J” (‘\v’/)ymn, h(/". =0

In order to apply these conditions to the set of

lincar equations (8), substitute in the boundary
condit-ons the expressions (5) for w, », and .
[t is seen that a0, ™ w™ must individually
satisfy all but the last of the boundary conditions.
The condition for the unloaded edges is equiva-
lent te equations (11). The temperature vise 7' is
taken to be uniform and therefore the T are
constants.
Solutions of equations (8a) for w® and »@ that
satisfyv the boundary conditions are
u' =10 3
. 32
e = (14 wWa T (.’l_.b,') (2

s0 that

N e — FhaT™
{ I8 (:g:{)
Tl s N
A u - ‘\I!/ — 4
The solution, except for elementary changes, is
scen 1o be identieal to the solution to the com-
pression problem.  For this solution, the param-
eter e will be related to the temperature rise T as
in the following equation (with no loss i gen-
erality )
, T -T.
E,:: . er (34)
[l‘f
where 7., s the temperature rise for buckling
which ean he identified as equal to 7™ for given

valuer of w and w. Tt follows that

o [0
tr*[,‘vha;' o T T ('{")

( m 7r‘)2
u

T =t fornz4

i T 7
and

The solution to this problem ean bhe adapted
from the solution for the compression problem
(egs. 25) and (26)) as follows:

(1) Omit (

r o .
ey terms 1 .
a 2

L. . 7
27 (Change the coeflicients of the '/——. terms
o b2
¢ by

, . Py 304 (t—=p) b
(a1 Replueing —u 47r'-'l)b-\ —_— -
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. 5‘2 2 6’.’ ) ,
(by Replacing ,;[- by 5 (174 u8%)

(¢) Replacing 8%w,n? by 8',(n*4- uB?)
)

(3) Replace Ih('——[b- term in N, by

2 53 2 2 >
_ o el ;:f__,a7'—26"6"'—4ﬁ25‘73)

(1) Redefine the parameters 82 and i, as follows:
12(0—u5b* ., 0w
- 7'(‘ ‘,*H') ),,a/ﬂ'— (B*-+-1#)?
5’-’1A,,‘,’r;ﬁ_,,,h:,,, JE

334t

— 3R Ay
2 3t

Problem 2: Zero in-plane displacement normal
to all edges..--With the origin in the cormer as in
the previous problems, the boundary conditions
for zero in-plane displacement normal to all edges
can be written:

Zero dellection:

(O =ea ) = w(ae,0)=-w (b} -0
Zero moment :

w o (0 =0, (==, (e, 00—, (0,60

Zero displacement

1w (0,9) —nlaip)y = vl 0)ye—r(n,by =0
Zervo shear stress:

o, (0 =0y =, 0=, (0 b)) =0

These conditions must also hold for the values

™A and ™0 Again the values of 7%
are constant,
Solutions of equations (8ay  that satisfy the

boundary conditions are #™=r"=0 so that

. h

a'["(h‘
I—u

s\'\m_w R\'Hby N
AV AN e
(36)

AT
N=0
Ageain 11 ean be seen that the solution except for
=

some identical 1o the
solution for the compression problem.

clementary  changes is

As in the previous temperature problem, let

, T—T,

€ ==
T

and 1t follows thut

. \ , D{1—uw 'mvr\)" nw\?
R g i ] e
re=Tr"=T, Iha ( a +< h ) oy
(37)
T =0for nz4
The solution to this problemt may be adapted

from the compression problem  (eqs. (25) and
(26)), as follows

(1) Omit the ((’I~§) terms in .

2) Omit the (V=1 terms in »
(2) Omit th (_b 2)1(IHL in e,
. oo

(3) Replace the term—p-in N, by

Drt (12014 w) b*
— (T e
Q2 2 2| 2
g BRI i Bt ")
| — o Iy

(4) Inzert following term in N,
Die? 120000 b2,
N E

‘Il'z ll"

. ”2 + #u‘_’_46I ”L’V' Mdr F )
w l—p

(5) Redefine 62, 70, @, and ' as follows:

12014 p) b2 . D s
“f “) S ol (B ) — (B )
5o (1— ) - s I
’ (3B )+ dpsin®
W —= ﬁt
TR O
B T

— 3
e (] — a2 o o
Py ) 60wt s

et

8B 1)

=i
LRI

Problem 3: Zero in-plane displacement of all
edges..- -With the origin in the corner as in the
previous problems the boundary conditions for
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zero in-plane displacement of all edges can be
written:
Zero deflection:

w(Oy)=w(ay)=wl0)=wrb)=0
Zero moment:
10, (03 =1, (a,y) =w,,, (r,0)=w,,,(r,d)=0
Zero displucement on all edges:
u=0r=10

These equations must also hold for the values
w o pt et Again the values of 7™ are
constant.

Solutions of cquations (8a) that satisfy the
boundary conditions are 4@ =¢® =0 so that

4 AL
AT AT 1’,/“1,,1,__
N =N - ‘
(38)
Ty _
N -0

The solutions for w® and 7'® are identical in
form to the previous case

, .omwr .oy )
w'V=w, sin sin 7Y (39
a b

D(1— mw\*

T mnw Il7r )
R ( a )] (40)

for the unknown & and » are

ADMINISTRATION

The solutions for ® and »® are not obtainable
as casilv as in the previous cases because the
boundary conditions for this case cannot be satis-
fied by a few simple trigonometric expressions.
If the sclution is taken in the form

oy Wi Imm r’mnr ’nm/
=g [f("‘;!/)‘hj — a 1

. W 1nr/ 2nmwr . 2nm,
1*”1;‘ n(.r,y)+§ —b-(c()s w0 --—l) sin =y Y
(41)

the equations giving £ and n which are obtained
from eqrations (8¢) are
mm erJ
—2u — sm -

nw (m 7r> "nm/
-9
Nrr=— M- b

‘Evr1+ 7777 E:W/+’l¢i’# Tz =—

lrp.

1—
- "I;w“}“‘".i'H
(42)

with beundary conditions that £=5=0 on all
edges.  In addition £ is antisvmmetrie in the
r-direetion and symmetrie in the y-direction and 5
1s antisy mmetrie in the y-direetion and symmetrie
in the w-direction.
boundary

Fourier scries which satisfy
atd symmetrie conditions term by term

i i a;, sin i in imy
i T
4 d b

24 =1

w

n=

t

~.

[Me
o

1.3

l

. odmr
bi;sin — sin ?
«

(43)
J7"7/
b

Using these series for £ and n in conjunction with the 'ralerkin method leads to the following
pair of linear algebraic equations which determine a;; and by

O
b”[\':'*"l": -

Ai=13j=24

(YLt s 5,

Ly i=24j=13

l+,.¢) b ® 1Irs 8 min
]—’ . Z 2 bu(, _Zz;*(\:f—)— vy O

@

(r=24,...;5=1,3,..)

nm*b .
7,7668'2" (":]7'3:---;5':{'2;47---)

(44)

where 8,0, and 82, are the Kroneker deltas, which are defined so as Lo vanish if the subscripts

are different and to equal unity if the subseripts are the same.

The number of different a;; and

b,; required for convergence will depend on the buckle corfiguration considered.
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If, for example, the square plate that has buekled into one buckle is considered (n=n=uafb=1),
the following values for the most important of the coeflicients a;; and by are obtained:

Ay =0 ,=0.2202(8y/a)

(1,3,,,{)1,“() 059! )(Hluf(l)

g ’),;

(45

0.0187(8uja)

(yy== b, — 0.0086(8u/a)

Once the

i’\?;‘.’) +j\r‘(r11)

\

L\Yltlz; + J\r;lm

‘o Y T
1\1;+\‘ll) 5)(1 ) QI (£»Il+nvr)

and 1w, may be obtained from

0 ¢

The solution for w

[]l '/"‘” Eh w2 /nr ( ‘)I/Hrl
| u —|—]_#2»8-|:<\ ) 1—cos -

values of a;; and b;; are found, the solution may be continued

Lk {%'Il;‘_l_llf_/:i u(;z |:(1/(¢I7r> (l—(os ‘)Hb"rl/)+“(-“b7r> (1‘( < Hrnnrr )+£'T ‘ M.y]\

"”r (1 cos )'mru)%-ﬂw -k, ] ro(46)

r

*hora

4 r - . .
[ I [V Ny S (NP N )+ 2ONE -+ N Y] sin =5 sin =2 L dy=0
(Y 0

(

in terms of the @ and b, 1s as follows:

w12j16(1+#)a7.(2)[\1717r _|_<mr ] { [(Illr>+) nnr’ [zl)z)*+(/l[)w)4:|

41/1 I: m7r> tu (I!w)] ;‘”)m ;

4bn (Ib )‘Jr‘ﬁ‘« (i"lr)]‘;d bz‘.:?rl,%'_

m7r nw dm °° Ao s 400 ab, o -
st 20 4
|: ) +( ):I f=n {] —4m3+ b ,;5 f—An? ) (47)

The first approximation may now be written if
vilues are assigned to the perturbation parameter

e.  The solution for this problem is not carried
beyvond the first approximation beeause of the
complexity of the analyvsis.

Asin the other temperature problems, there is
no loss in generality if

o T T,

T,
and 1t follows that

,I‘(.')""’— ’[’(l)),,, 'I‘z'r
(48)
Tw-—0fornz=4d

Results for the deflections and stresses are

written in cquation form for Hu' first approxima-
tion, as follows:

™ ha B85 . 2mw ( 2wy
— S A cos S
" 1“#) e 5 y s — p cos Ty )
J b/:l (492)

pr e =
2wy

+—— — D 2, Uysi 717«
=y

2 an? i=2.4j=1,3

. i K l:n
Y - (

+ 57 Z Z, b,,sm As1|| Jmy (49h)

Ti=1,3)=2,4 b

2 m.r 1 )

o ,
| 2hé iy mwe o ’L[[-’f (49¢)
A3 =) a )

i
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and

1‘-’ 4+ )b o

952 o o
'i‘iol:ﬁ (1'*(0\ —{—un-(l— cos ,,’L’ﬂ)
I— pr a
b NN
+. o Ag})‘m,j(m . " sin b
b & . oAmr Ty o
+u %Z{LJ(’ S » ' "!75'7:] (H0a)
= j=24
D=? 120140 w) b
'\’ - B i m
u b { e h_( 7
Yy 5
6—[/1 (1—10 "(Im)—{—pﬁ (1—((»~ /)
¢ -
+ ’ Z /b5 sin T st my
Ti=i3j=0.4" « b
+M(l1r> > iy cos —(}—\m ﬁr/:]} (H0b)
r*’ij‘l
. Dr? 8 b & : i my
N bi 1y M(W,A>4},Z J i sin a
b & & s /7r/ R
+(l7|' I;l-l‘ /2"'—14 biy COS « \I“ 1) ) (')()(’)
where

) NEEIEP L
8= (1 =) [ (,rf g Ji el

:—[:{(ﬁ' C2uBtt b ) 488 )

+ 1) — (B H"’)E]

1
Z (I‘.‘m,j/'

J:L:{
—3n(0* - pp? ’ Z by (8419
(45 { Z a, J +-n b L b, . )
Ll e . L F e ey R T e

(H1)
and «,; and by ave given by equations (44,
Problem 4: Infinitely long plate with zero
in-plane displacement of all edges. The next
problem considered is the postbuckling behavior
of a simply =upported infinitely Tong plate subject
to a unmform temperature rise with zero in-plane
displacement of all edges. Only the buekle pat-
tern with one buekle in the long direction (ev-
hindrieal buekling) is examined.  Cvylindrical buek-
ling occurs for the lowest buckling load, and no
change in the buckle pattern is indicated.
FFor this ease the deflection w0 normal to the
plate and the displacement » may be considered

NATIONAL AERONAUTIUS AND SPACE ADMINISTRATION

to be funetions of y only and the displacement u is
zero  everywhere,  With  the origin along  the
lower ecge of an infinite plate of width b, the
remainive boundary conditions may be written

Zero deflection:

() =an(hy- 0
Zero moment:

i, (0)=1,,,(h) =

Zero displacement:

MO)=1p(h)==10

In order to apply these conditions to the derived

equations, insert expressions (5) for o and w.
It is seen that ¢ and »® must imdividually
satisfy these conditions,  Again the temperature
rise is ur-iform and therefore the values of 77 are
constant.

Solution of cquations (8a) that
houndary condition is (u—10):

satisfles the

M= 10 (52)
s0 that
A — \' m_ J4A/ al ’
f—u (53)
A\"m =t J

FFor this problem equation (Rb) has the solution

.oy ;
' sin s (54)

b
that  satisfies  the  boundary  conditions.  This

solution requires that

ey P (1 — ny? -
g 4201 u)( 7r> (55

Fha \ b

So far the solutions obtained are wdentieal to the
small-de leetion solutions where the set of values
of T™ {one for cach n) ean be identified as the set
of temp rature rises that would cause backling.
The lovest temperature rise that would eause
bhuckling is the one corresponding to n =~ 1. Note
that, as in small-deflection theory, the amplitude
wy canne U vet be determined.

The 57 forees may be found now (n terms
¢nd from equations (8e¢) the solution that
satisfies the boundary conditions is

of ),

w RITEY)
o ooo=hTYy

< b S b (H6)
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so that
N@ L NI
A 4 “vVr

\71 21 \ ‘\'1 1y __
)
NG+ N =0

Now % must be determined from equation  (Sd)

[ (14 wal® 4 u 4(-”;")]\
[ (14wl 1 ?'1("1{)1)2] (57)

J

After substitution for the N's and w0

equation (8d) becomes (since w® is a function of y only):

‘ Ih o oy
[)”.w{r/)//r/+l l‘(lli .‘-u'%r)'*l__#g (b

In order that this equation have a nontrivial
solution satisfyving the boundary conditions,

e AT
b (7117()2 {58)
b

I at this point the dl])llldl\' parameter € 18

g I

7 s it follows that

assigned the value

A LU
) (HM)
T00 =0 for n=4

1t can be seen now that there is no contribution of
any other of the set of equations (8); therefore, an
exact solution has been obtained for
The final results can be written

thiz problem.

1=A_ h
nw
P ])(]“—#)(7)77,) l*,u)a . Znwy
r=—\T—— — S s 2
Lhe 2nm 4
b
an lf7r
. “(17#)( ) 2b . uwy
e Y e\ T= =y ey
‘ J
(60)

N nay?
N,=—1hal ,u/)(b)

Ny=—D) ("bW) 61)

A“\rr_u =0

It may be noted that N, remains at the buckling

ks

N ) I T (F N . nwy
—(1-- ) ! —sin - -
) [ (14 waT™+ ( b ):' sin -

4

value in the postbuckling range.

DETERMINATION OF EFFECTIVE LOAD-SHORTENING
CURVES

For the temperature problems it is desirable to
have curves simitar 1o the load-shortening curves
of the compression problem.  The particular ad-
vantage of the load-shortening curve is that the
area under the curve is equal to the strain energy.
Alzo the intersections of the load-shortening curves
provide a convenient indication of the possibility
of change in buckle pattern.  For the temperature
problems considered, a strain energy as such does
not exist; however, a comparable quantity, the
energy (at the final temperature) which s re-
leased when the edge I‘(‘\‘Il':lilll\‘ are removed (re-
versibly), does exist. This ¢
15 equal to the strain energy of a shightly

recoverable” energy
larger
simply supported plate with edges subjected to
loads equal to the reaction loads at the in-plane
restraints,

The recoverable strain encrgy is now examined,
If the reaction loads at the restraints are N, N,
Ny, and the displacements that occur upon relaxa-
tion of the restraints are 7 and 7, the recoverable
strain energy {71s

Ou CoF
J [Jn ’ Oi e (/V+J \, ot ) ll.l

or v oT _ -
—I_J ¥ ()f I,,l,’/'/+J 1'!/ ()f )Ni hl/l]l/’ (()_)

where at =0 the plate s unloaded and at t==7 the
plate is loaded.  Sinee the final values of 7 and »
at the boundaries are functions of the temperature
rise 7" and sinee the reaction loads are given i the
analysis section as function of the temperature
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rise T, 1t is convenient to change the variable of
integration from ¢ to 7. This may be done sinee
the strain energy is independent of path.  The
recoverable strain energy can now be discussed in
more detail for cach of the temperature problems,

For problem 1 of the previous discussion, the
N, and N, terms do not appear, and, since u is
not a function of y at r=q,

)G,

h
[)':_J (“‘\'rJ‘)I—II (/!/
1]

where

At t=0, (e, y)=aal and at (=71, u(a,y)=0 so
that if the variable of integration is changed, the
above expression for energy can be written

‘aal
r:J Pd(T),—q

0

Changing the variable of integration again gives
or

I—me P AT (63)
[

Therefore, if P is plotted against aa7 or if 907/07
is plotted against 7" the arca under the curve up
to the temperature rise 7' in question will be equal
to the recoverable strain energy.  Obviously, for
this problem 307/ T=qal’.

For problem 2 (simply supported plate subject
to uniform temperatore rise with zero displace-
ment normal to all edges, zero shear on all edges)
the N, terms disappear and u is not a function of
y at w=a and » is not a function of z at y—b.
Therefore,

L] (5,
—}—I:.]:I(A\',,),/ 5 (/.l‘:l (g: \)” h}l/f

At 10, U(_u,]/)*aa'l'; r(rd)=baT and at f=r,
i,y —0; e hr=0.
pression can be written as follows:

o raal b
1',—’ [](Anrﬂm]«ﬁxﬂ
Shal a
“_' ’ [ I (E\‘vy)u:h 4[.)‘] A{(F)y -

Therefore, the energy ex-

It is convenient to change the variable of inte-
gration to 7T

T b ‘u
p:_ﬂaJ [j(wgﬁﬂm+gJ(AnFHn]dT
0 Juo 1
(64)

Therefore, if o07/07 is plotted against the tem-
perature rise 7' the area under the curve up to
the T i question is the recoverable strain energy,
For problem 3 {(simply supported plate subject

to uniform temperature rise with zero displace-
ment of all edges) no terms in the recoverable
strain energy disappear; however, at {—0,

u(a, ) =aaT

v(ay)=yal

wieb)=val

reb)y=baT
atel at t=7, u=r=0 on all edges, so that, after
change of variable

v h b a
U e[ [ Nty [Ny
Jo 0 @ Jy

1 *h 1 b
4 [ (N.)iza (/!I+;I f (CAY 1/.1'] dr
Al ]

a

(65)

Again, if 00707 1s plotted against the temperature
rise T the area under the curve up to the T in
question will be equal to the recoverable strain
energy.

Expressions have now been set down for the
femperature problems which, when plotted, will
serve s effective load-shortening curves. At buck-
ling tie small-deflection theory determines the
value Hf w to be used (n=1). Then if curves for
other values of m interseet they are also of interest.
For the fiest temperature problem, results identiceal
to thc compression-problem results (see fig. 1)
are oltained except that the abscissa must be
changed to

1201—u® b,

7r') 712 (1[
and 22 must now be regarded as the edge reaction
lond.  For a discussion of possible changes in
bucklc pattern, see reference 16, Tt would be ex-
peetec that changes in buekle pattern would be
of the type discussed for the controlled shortening
tvpe ol loading. Thus, for a finite plate, the values
of m can be taken from figure 1, or for the infinite
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plate the values of g==mbd/a can be taken from
table 1.

For the second and third temperature problem
no intersections occur; thus no changes in buekle
pattern are expected from that at initial buckling
so that m=n=1. Results are presented for these
problems in figures 7 and 8. In figure 7 curves are
presented for the second problem for plates of
length-width ratio 1, 1.5, 2, 4, and . The results
for plates of finite length are based on the first and
second approximation and the results for in-
finitely long plates are based on a separate exact
solution. [Tt is expected that the curves for finite
length-width ratio will become asymptotic to the
curve for mfinitely long plates.  The results for
the first and second approximation as plotted in
figure 7 lie reasonably close together for the range
of temperature rises shown and, thus, indicate
satisfactory convergence for nearly square plites
and somewhat less satisfactory convergence for
higher length-width ratios.  Although the results
presented  for simply supported plates indieate
a pattern of one large buckle for all length-width
ratios, it is 1o be expected that elamped plates
with the same in-plane boundary conditions will
have more than one buckle for some length-width
ratios and may have changes in buckle pattern.

For the third problem the recoverable energy
curve is presented in figure & for a square plate

/LSV'
l//,,////,

u/ar
2780l
n
T

o
8 // 2 ,/
oy
2 ,/- ———————— I'st opproximation
g ,'V —————— 2 nd approximation
:‘2_) | - — - — Exoct <%—~m>
O
P
o
b
a
L ] L
0] 2 4 6 8
1200+p) p2
Effective shortening, kY
7?2 h2

Fravre 7. Effective reaction load-shortening curves for
simply =upported rectangular plates with zero cdge
di=placement normal to all edges and =ubjected to a

uniform temperature rise.
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F16URrE 8.-- Comparizon of effeetive reaetion load-shorten-
ing curves of <imply supported plates with various in-
plane edge conditions and =ubjected to a uniform tem-
peratire rise,

along with the corresponding curve for the second
problem.  Also presented are the infinitely long
plate results which were presented in figure 7.
The mfinitely long plate results satisfy the bound-
ary conditions for this problem as well as the
boundary conditions for the second problem.
From the results obtained, there is no indieation
of u change in buckle pattern. Both the square
and the infinitely long plates buekle into one large
buckle.  Again, it is to be expected that elamped
plates with the same in-plane boundary conditions
will have more than one buckle for some length-
width ratios and may have changes in buekle pat-
tern.  Although figure 8 indicates some difference
between the recoverable strain energy for the
second and third problems for a square plate, a
separate caleulation shows that the deflection will
be essentially the same.  However, the stress
distributions will be different.  For higher temper-
ature rises, the result for finite length-width ratios
will become nsymptotice to the infinite plate results.

CONCLUDING REMARKS
A Dimear set of equations has been derived to
replace the nonlinear large-deflection  equations
for plates and is shown to have the advantage of
simplicity of solution, since much more is known
about solving linear partial differential equations
than about solving nonlinear partial differential

cquations.  However, the linear set of equations
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are subjeet to certain limitations depending upon
the application desired. Tt is to be expeeted that
solutions to certain problems might not converge
satisfactorily, and at the present time it appears
that the linear equations cannot be used to solve
postbuckling problems for plates with initial cc-
contricities.

For the compression problem solved, the second
approximation of the present theory agrees with
exact results for the square plate.  Results for
plates with finite, as well as infinite, length-width
ratio indicate that the effeets of change in buekle
pattern must be considered. For aninfinite plate,
results obtained in first approximation agree with
the best previous results for much of the range, but
results for the second approximation give lower
and more accurate louds for given shortenings.

The comparisons made indicate that, for ex-
treme-fiber strains and deflections at the erest of
a buckle, the present theoretical results for simply
supported rectangular plates with straight edges

free of shear agree well in the postbuckling range
with cxperimental results on practical stiffened
pancls,

For temperature problems a procedure is de-
veloped which permits curves to be drawn similar
to the load-shortening curves of the compression
problem for the purpose of indieating possible
changes in buckle pattern.  For a plate with zero
in-plare displacement normal to the short edges
and subject to a uniform temperature rise the
results are identieal, except for a few elementary
changes, to the compression problem, and, there-
fore, sach a plate is subject to change in buckle
pattern.  For plates with zero in-plane displace-
ment normal to all edges and subjeet to a uniform
temperature rise no buckle pattern change is
indicated.

Laxarey ReEsgarcH (CENTER,
NATIONAL AERONAUTICN AND SPACE ADMINISTRATION,
Lascrey Fiewp, VA, March &, 1959.



APPENDIX

EXPERIMENT

Data are presented from two different types of
test speeimens which are deseribed in this appendix.
The loaded edges in both types of test specimens
were ground flat and perpendicular to the longi-
tudinal axis of the specimens.  They were com-
pressed “flat ended” between the platens of the
1,200,000-pound capacity hydraulic testing ma-
chine at the Langley structures research labora-
tory, which applies load through the use of a
hyvdraulic ram.

PLATE SUPPORTED BY MULTIPLE-BAY FIXTURE

Apparatus and method of testing.-—In one test
the plate was supported by a multiple-bay fixture
(fig. 9) in an attempt to provide the edge condi-
tions usually specified by theory along the un-
londed edges of each panel: simply supported

straight edges free of in-plane shear. A 2024 -T3

aluminum-alloy flat plate 52.32 inches by 25.36
inches by 0,072 inch was tested.  The plate was
supported laterally with knife edges (on both
sides) by a fixture forming eleven panels 4.71
inches by 25.36 inches.  Spur gears attached to
the knife edges and racks attached to the base
plates of the fixture were used for positioning the
knife edges.  The knife edges could rotate and
thus allowed uniform in-plane movement normal
to the unloaded edges of each panel.  Magnets
installed in the base plate supported the weight
of the knife edges during assembly.  The knife
edges were accurately placed by the use of kevs
through the base plate which were removed after
initial loading. A view of one of the base plates
with the knife edges in place is shown n figure 9.
A lubricant was applied to the plate under the
knife edges to facilitate m-plane movement of the

L-88588



26 TECHN1CAL REPORT R—40— NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

plate along the unloaded edges and to leave them
virtually free of shear.

The instrumentation included eight pairs of
wire-resistance strain gages cemented to the plate
back-to-back and spaced 2 inches apart along the
center of the middle bay.  The gages were wired
so that strain differences could be measured at the
location of each pair of gages.  Wire-resistance
strain gages on a calibrated cantilever beam were
used to obtain the total shortening by measuring
the change of distance between the platens of the
testing machine.  The data from all the gages
were recorded  simultancously and  continuously
from initial load to failure.

Analysis and discussion of data.-The total-
shortening data were taken by measuring the
distance between the platens at a short distance
from the test specimen.  Beeause of deformation
of the platens during loading the prebuckling
slope of the load-shortening curve was in error.
The deformation of the platen is believed to be
direetly proportional to load, and the data were
corrected accordingly.  The corrected load-short-
cning curve is given in nondimensional form in
figure 3. The breaks in the curve after buckling
occeurred beeause of changes in buckle pattern.
The changes occurred in a violent manner and
were observed to go from 5 to 6 to 7 to 8 buckles.

The pair of back-to-back strain gages indicating
the largest strain difference along the eenter line
of the middle bay were assumed to be on the crest
of a buckle (no direet observation could be made).
No appreciable error is expected from this assump-
tion since the variation of strain near the erest
of u buckle is small.

Initially the plate buckled into 5 buckles and
one set of guges was nearest the erest.  After the
buckle pattern changed to 6 buckles, another set
of gages was nearest the erest. The results from
the set of gages nearest the erest in the lower range
and from the other set of gages in the upper range
are shown in nondimensional form in figure 4,
where the bending strain at the erest of the buckle
is plotted against the load. The load at which
the material started to becowe plastic was meas-
ured by other gages which gave the extreme fiber

strams at the erest of the buckle and is indicated
in figure 4.
Z-STIFFENED PANELS

Data on four Z-stiffened panels similar to those
used in aireraflt wing construction were obtained
in the range from zero strain up to several times
the buckling strain.

Test specimens and instrumentation.—The
important dimensions of the four panels tested
arc shown in figure 10. Each panel had four
Z-section stiffeners attached to flat sheet at three
equal spacings.  These Z-stiffened panels were
part of a large group of panels deseribed in refer-
ence 17, The panels deseribed in figure 10 had
additional instrumentation in order to permit
a study of their postbuckling behavior. The
material in the sheet and stifTfeners was artificially
aged alelad aluminum-alloy plate, which is dis-
cussed in reference 7. Wire-resistance strain
gages were cemented to the panels so that strains
could he measured at the crest of a buckle and
at the stiffeners.

Analysis of data. -The strains were measured
at mtervals of load from initial load to failure.
The st ains measured at the stiffeners were aver-
aged, wnd they were plotted against the strain
measured at the crest of a buckle in figure 5. No
abrupt change in buckle pattern occurred in the
range shown. The strains believed to have been
in the slastic range are indieated,

C 1 SN2 - le Tl7_|
= .
‘ T B
b
g ‘W 7/‘7w
1 r \ R
le b=4 b
. I ‘
ti'h ! h « by kg b 0y, oy
. i : ] '
‘ \ | !
0,030 0 1o 1l ool 13y, ST
3 16 17, i 072 13, B 0 R
18 2 R 1 By 4 :
162 Lol % S
A

Fravre 10, -Dimensions of the four Z-stiffened panels

tested.
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